
Interoperable Tools for Advanced
Petascale Simulations (ITAPS)

ComPASS Meeting Update

December 3, 2008

LLNL-PRES-407129

2

Outline

• ITAPS data models & interfaces

• ITAPS services

• ANL/ITAPS activities & opportunities

3

ITAPS 3-Tier Approach
Interfaces, Tools, Services

Mesh Geometry Relations FieldCommon

Interfaces

Component

Tools

Are unified

by

Petascale

Integrated

Tools

Build on

Mesh
Improve

Front
tracking

Mesh
Adapt

Interpolation
Kernels

Swapping
Dynamic
Services

Geom/Mesh
Services

AMR
Front tracking

Shape
Optimization

Solution

Adaptive

Loop

Solution
Transfer

Petascale

Mesh

Generation

NN

αα

αα

ββ

αα αα

PP

PP

PP

PP PP PPββ PP

ββ αα

Fusion

Nuclear energy

Groundwater

Accelerator

to… GRUMMP MOAB FMDB NWGrid CGM Lasso

4

The ITAPS data model abstracts
PDE-simulation data hierarchy

• Core Data Types

– Geometric Data: provides a high level description of the

boundaries of the computational domain; e.g., CAD, image, or

mesh data (iGeom)

– Mesh Data: provides the geometric and topological information

associated with the discrete representation of the domain (iMesh)

– Field Data: provides access to time dependent physics variables

associated with application solution. These can be scalars,

vectors, tensors, and associated with any mesh entity. (iField)

• Data Relation Managers (iRel)

– Provides control of the relationships among the core data types

– Resolves cross references between entities in different groups

– Provides functionality that depends on multiple core data types

5

The ITAPS data model has four
fundamental “types”

• Entity: fine-grained entities in interface (e.g.,
vertex, face, region)

• Entity Set: arbitrary collection of entities &
other sets
– Parent/child relations, for embedded graphs

between sets

• Interface Instance: object on which interface
functions are called and through which other
data are obtained

• Tag: named datum annotated to Entities and
Entity Sets

6

The iMeshP parallel interface defines
a partition model

• Process: a program executing;
MPI process
– # of processes == MPI_Comm_size

– Process number == MPI_Comm_rank

• iMesh instance: mesh
database provided by an
implementation
– One or more instances per process

• Partition: describes a parallel
mesh
– Maps entities to subsets called parts

– Maps parts to processes

– Has a communicator associated with it

7

The Partition Model

• Ownership: right to modify an entity

• Internal entity: Owned entity not on
an interpart boundary.
– E.g., all triangles w/ same color as

iMesh label for part

• Part-Boundary entity: Entity on an
interpart boundary
– E.g., bold edges

– Shared between parts (owner indicated
by color; other parts have copies).

• Ghost entity: Non-owned, non-part-
boundary entity in a part
– E.g., triangles whose color is different from iMesh label

– Needed for adjacency and/or solution data

• Copies: ghost entities + non-owned part-boundary entities.

8

Basic and advanced functionalities
are supported in the geometry interface

• Model loading and initiation

• Topological queries of entities and

adjacencies

• Pointwise geometric shape

interrogation

• Parametric coordinate systems

• Model topology modification

• Model construction (primitives,

booleans, transforms, etc.)

9

Relating mesh and geometry data is
critical for advanced ITAPS services

• Required for e.g., adaptive loops, mesh

quality improvement

• Mesh/Geometry Classification Interface

– Manages the relationship between the high

level geometric description and the mesh

– Called by an application that knows about

both

• Capabilities

– For a given mesh entity, get the geometric

entity against which it is classified

– Establish a classification relationship between

a mesh entity and a geometric entity

10

ITAPS Interfaces Designed for
Interoperability

iMesh
(C) ‏

implA.CC

app1.f77 app2.f90 app3.CC app4.c

implB.c implC.f77

Babel

Server

f77 client

Python client

Java client

app1.f77

app2.py

app3.java

• Interoperability across language,
application, implementation

• Multiple call paths to the same
implementation

• Efficiency preserved using
direct, C-based interface

11

Simple Example: HELLO iMeshP

#include "iMesh.h"

#include "iMeshP.h"

#include <mpi.h>

int main(int argc, char *argv[]) {

char *options = NULL;

iMesh_Instance mesh;

iMeshP_PartitionHandle partition;

int me, dim, num, ierr, options_len=0;

iBase_EntitySetHandle root;

/* create the Mesh instance */

iMesh_newMesh(options, &mesh, &ierr, options_len);

iMesh_getRootSet(mesh, &root, &ierr);

MPI_Init(&argc, &argv);

MPI_Com m_rank(MPI_COM M_ W O RLD, &me);

/* Create the partition. */

iMeshP_createPartitionAll(mesh, MPI_COM M_ W ORLD, &partition, &ierr);

/* load the mesh */

iMeshP_loadAll(mesh, partition, root, argv[1], options, &ierr,

strlen(argv[1]), options_len);

/* Report number of Parts in Partition */

iMeshP_getNumParts(mesh, partition, &num, &ierr);

printf("%d Number of Parts = %d\n", me, num);

. . .

1

2

3

Parallel Version: HELLO iMeshP

1) Instantiates Partition

2) Reads mesh into mesh
instance and Partition

3) Reports # parts in Partition

Revised 11/08

12

HELLO iMeshP Makefile

CC = mpicc-g

IMESH_DIR = /usr/local/itaps/FMDB_iMeshP

include $(IMESH_DIR)/lib/iMesh-Defs.inc

INCPATH += $(IMESH_INCLUDES)

LIBS += $(IMESH_LIBS)

hello_iMeshP: hello_iMeshP.c

$(CC) $(INCPATH) -c hello_iMeshP.c

$(CC) -o $@ hello_iMeshP.o $(LIBS)

Revised 11/08

13

ITAPS API's: Argument Handling
Conventions

• ITAPS API's are C-like and can be called directly from C, Fortran, C++

• Arguments pass by value (in) or reference (inout, out)

– Fortran: use %VAL extension

• Memory allocation for lists done in application or implementation

– If inout list comes in allocated, length must be long enough to store results of
call

– By definition, allocation/deallocation done using C malloc/free; application
required to free memory returned by implementation

– Fortran: Use “cray pointer” extension (equivalences to normal f77 array)�

• Handle types typedef'd to size_t (iBase_EntityHandle,
iBase_EntitySetHandle, iBase_TagHandle, iMesh_Instance)

• Strings: char*, with length passed by value after all other args

• Enum's: values (iBase_SUCCESS, etc.) available for comparison
operations, but passed as integer arguments

– Fortran: named parameters

14

Argument Handling Conventions

Issue C FORTRAN SIDL

Function Names iXxxx_ prefix Same as C Removed iXxxx_ prefix; SIDL interface

organization

Interface Handle Typedef'd to size_t, as type

iXxxx_Instance; instance handle is

1
st
 argument to all functions

#define'd as type Integer; handle

instance is 1st argument to all

functions

Interface type derived from sidl.BaseInterface

Enumerated Variables All arguments integer-type instead

of enum-type; values from

enumerated types

Same, with enum values defined as

FORTRAN parameters

Int-type arguments; enumerated types defined

in iXxxx:: namespace, and values appear as

iXxxx::enumName_enumValue

Entity, Set, Tag Handles Typedef'd as size_t; typedef types

iBase_EntityHandle,

iBase_EntitySetHandle,

iBase_TagHandle

#define'd as type Integer Handles declared as SIDL opaque type

(mapped to void* in C/C++ server)

Lists · In: X *list, int occupied_size

· Inout: X **list, int

*allocated_size, int

**occupied_size

· malloc/free-based memory

allocation/deallocation

Same, with Cray pointers used to

reference arrays (see FindConnectF

example

· In: sidl::array<X> list, int occupied_size

· Inout: sidl::array<X> &list, int

&occupied_size

· sidl::array class memory allocation

String char*-type, with string length(s) at

end of argument list

char[]-type without extra length

argument (this length gets added

implicitly by FORTRAN compiler)

sidl::string type without extra length argument

15
0 1 2 3 4 5 6 7 8

0

10

20

30

40

50

60

70

80

90

100
Total CPU Time

Native Scd

Native Arr

Native Ent

SIDL Arr

SIDL Ent

C Arr

C Ent

Cubit

Elements (million)

T
im

e
 (

s
)

0 1 2 3 4 5 6 7 8

0

100

200

300

400

500

600

700

800

900
Memory Usage

Native Scd

Native Arr

Native Ent

SIDL Arr

SIDL Ent

C Arr

C Ent

Cubit

Elements

M
e
m

o
ry

 (
M

B
)

Performance

• Large applications balance memory and cpu time performance

• Implementations of iMesh vary on speed vs. memory performance

– Create, v-E, E-v query, square all-hex mesh

– Entity- vs. Array-based access

• Compare iMesh (C, SIDL), Native (MOAB), Native Scd (MOAB), CUBIT

– Ent-, Arr-based access

– All-hexahedral square structured mesh

Native Scd

C Ent ‏‏ ‏‏

CUBIT

SIDL Ent

SIDL Arr

C Arr ‏‏ ‏‏

Native Ent

Native Arr

C Ent ‏‏ ‏‏

SIDL Ent

C Arr

Native Scd

Native Ent

Native Arr

CUBIT

16

Performance in building a finite
element stiffness matrix

T
im

e
 (

m
s
)

iM
e
s
h

O
v
e
rh

e
a
d

Native 10479

Array-based 10774 2.8%

Entity Iterator 11642 11.1%

Workset Iterator (1) 11351 8.3%

Workset Iterator (3) 11183 6.7%

Workset Iterator (5) 11119 6.1%

Workset Iterator (10) 11095 5.8%

Workset Iterator (20) 11094 5.8%

• Set up a simple stiffness matrix
for a 2D diffusion equation

• Examine costs of entity access via
native data structures, arrays,
entity iterators and workset
iterators

• Arrays minimize time overhead
but require a data copy

• Entity iterators are straightforward
to program, minimize memory
overhead, but maximize time cost

• Entity array iterators balance
time/memory tradeoffs but are the
most difficult to program

∇2u = f

u(x=0)=1 u(x=1) = 1

uy(x=0, x=1) = 0

17

Performance of iMesh Swap for 3D
Meshes

• Comparing GRUMMP native implementation to service
with GRUMMP iMesh implementation

• Most remaining overhead is in transcribing data to
return format expected by iMesh

Case # of Native iMesh

Tets Swaps Rate (1/s) Swaps Rate (1/s)

Rand1 5104 10632 29500 10838 21300

Rand2 25704 65886 27700 67483 22100

Airplane 251140 25448 3380 28629 2800

Rocket 464080 53331 3540 59330 2790

18

Performance of Zoltan Partitioning for
3D Meshes

• Comparing MOAB native implementation linking to
Zoltan partitioning service with the MOAB iMesh

implementation

• Using a coordinate bisection geometric partitioner on

tetrahedral meshes and array-based access to the
data

15591 0.866 0.869 0.35%

20347 0.971 0.976 0.51%

34750 1.28 1.31 2.34%

54383 1.72 1.75 1.74%

100630 2.76 2.82 2.17%

Number

of Tets

Native

(sec)

iMesh

(sec)

iMesh

Overhead

Omega3P,
Sensitivity,

Optimization

p0
G(p0) m(p0)CUBIT

Iteration 0:

ip∂

∂ Γx

p
k

G(pk) m0’Ddriv

…

Fixed mesh topology:

Convergence

No re-meshing

Re-use factorization

Ddriv

Iteration 1..k:

Ddriv

Ddriv

• Optimizing a cavity design is still mostly a manual process

• Future accelerators employ complex cavity shapes that require optimization to improve

performance

• Geometry & meshing support:

RIA

ILC

LCLS

Shape Optimization for
Accelerator Cavity Design

bl

al a1 a2

b1

ar

br

b

ra1
ra2

zcl zcrzcbzcc

zcll

• Generate new geometric model G(p’)
given a parameter vector p’
– MkILCCell function
– DDRIV

– CGM (iGeom)

• Associate old mesh m(po)
to new geometry G(p’),
project to CAD
– DDRIV

– CGM (iGeom)

– MOAB (iMesh)

– LASSO (iRel)

• Smooth mesh
– …

– Mesquite

Smooth Curves Smooth VolumeSmooth Surfaces

New geom,

old mesh

Project to CAD,

inverted elements

Shape Optimization for
Accelerator Cavity Design

21

Services Provided by DDRIV

• Parameterized geometric model construction

– You write function which constructs model using

iGeom

– DDRIV acts as driver and handles IO

• Coordination of mesh smoothing on geometric model

• Re-classification of “old” mesh on “new” model

• Target matrix-based smoothing of re-classified mesh

• Computation of design velocities & embedding on

mesh using iMesh Tags

22

Mesquite provides advanced mesh
smoothing capabilities

• Mesquite is a comprehensive, stand-alone
library for mesh quality improvement with the
following capabilities

– Shape Quality Improvement

– Mesh Untangling

– Alignment with Scalar or Vector Fields

– R-type adaptivity to solution features or
error estimates

• Maintain quality of deforming meshes

• Anisotropic smoothing

• Control skew on mesh boundaries

• Uses node point repositioning schemes

23

Our mesh quality improvement work
has impacted many DOE applications

Application: Plasma implosion using ALE methods
Challenge: Maintain good mesh quality and biasing

during deformation of plasma.
Impact: Prior to use of Mesquite, this calculation

could not be performed by Alegra due to
ineffective mesh rezoning algorithm.

Application: Burn of rocket propellants in a
time-deforming domain

Challenge: Maintain good tetrahedral element
shape quality as domain deforms

Impact: Condition number smoother (through
ShapeImprovementWrapper) enabled
many burn simulations at CSAR/UIUC.

Application: Shape optimization for
accelerator cavities to minimize losses

Challenge: Rapidly and smoothly update the
mesh to conform to trial geometries

Impact: Used the deforming mesh metric to
prototype geometry & mesh update
model for potential use in SLAC
accelerator design studies.

24

ITAPS has been integrated with
VisIt as a database plug-in

• A single plug-in supports multiple ITAPS
implementations

• Supports all entity types

• Supports subset and and tag data
visualization

• Future integration will use VisIt’s in-situ
‘simulation’ interface
– Will enable any ITAPS-compliant software to

integrate with VisIt at run-time

25

VisIt can be used to display test data
from multiple implementations

Example of VisIt displaying test data from

multiple ITAPS implementations simultaneously

Parallel Tetrahedral Mesh Generation

• Mesh volumes and surfaces in parallel

• Use graph partitioning to partition work

• Use of component-based mesh, geometry, partitioning

• 1st-generation tool developed before ITAPS parallel interface specification

• Parallel communication handled at application-level

• Need production-capable tool

Processor: 1 2 3 4

CAD-Based Monte Carlo Radiation Transport

Facet-based Ray Tracing

• Most Monte Carlo codes use CSG-type

geometry construction

• Replaced with high-fidelity CAD modeling

– Use modern geom construction tools

– Model more complex solids

• Previous CAD-based MC 20-100x slower than native

– Facet-based Oriented Bounding Box (OBB) tree acceleration reduced

slowdown to 2-5x

• Component-based approach simplifies introduction into multiple MC codes

– Incorporated into ITS in < 1 week

CGM/MOAB

Ray-OBB
intersection

MCNPX/CGMCUBIT ITS/CGM

ARIES Compact Stellerator

AABB

O
BB

level 1

level 2

level 3

OBB Tree

CAD-Based Monte Carlo Radiation Transport

ITER Modeling & Code Comparison Effort

equitorial port w/

tally spheres

divertor

to
ro

id
a
l
fi
e
ld

 m
a
g

n
e
ts

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Nuclear Heating (kW)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Nuclear Heating (kW)

TOP

BOT

TF Magnet Heating

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 250 500 750 1000 1250 1500 1750

Poloidal Distance (cm)
N

e
u
tr

o
n
 W

a
ll

L
o
a
d
in

g
 (

M
W

/m
2
)

O/B
I/B

n Wall Loading

n Source

Joint US/FRG/PRC effort

29

MC-Based Neutron Transport for ITER

Module 13 First Wall/Shield Design

• Heat deposition & cooling

• Helium generation close to weldable components

CGM→MOAB → VTK → Visit

30

Solution Coupling

• Need to couple physics (TH,
neutronics, structural mechanics)
for reactor simulation

– Need to preserve standalone development capability

• Assumptions:

– Each physics solved on its own mesh, optimized for that physics

– Each physics mesh distributed with its own distinct MPI

communicator, independent of other mesh

– On each processor, meshes for both/all physics stored in the same

MOAB instance

• Coupling algorithm:

– Initialization (read mesh, initialize searching structures (kdtree))

– Point location

– Interpolation

– Normalization

31

Solution Coupling

Results

• Implemented as tool in MOAB

• 12k hex, 130k tet

• Contrived data field

• Not implemented on iMesh

– Tree-based search

– Field interpolation

32

Solution Coupling

Timing, Future Work

• Future work:

– High-order (spectral) element interpolation

– Subset-based normalization

– Error norms

– Timing, scalability

33

CGM Port to Open.Cascade

• CGM: provides common interface to geometry from multiple engines

– ACIS

– Catia/ProE (Sandia or weapons complex-restricted)

– Facet-based geometry

• Smooths topological model variations

• Porting to open-source Open.Cascade modeler

– Substantial improvements to OCC build process (autoconf-based)

– Ready for (very) friendly external users

(http://trac.mcs.anl.gov/projects/ITAPS/wiki/CGM)

• Methods for getting OCC-based model

– Read OCC BREP format

– Read/translate IGES/Step format

– Construct model using CSG approach

• Implemented reader for MCNP input file syntax

• Simple thing to do same for Superfish?

34

ABTR 1/6 Core Mesh Generation

• CUBIT-based approach required 6 GB for ~5M elements

• Different ways to generate mesh

– Start with ass’y geometry + mesh, copy/move/merge in CUBIT

– Start with ass’y mesh, copy/move/merge in external tool

• Development underway in MeshKit

• Need to handle sets carefully (material, geometric topology, BC’s)

– Copy/merge sets

– Start with cross section 2d mesh, extrude into 3d

• Will require extrude tool in MeshKit

• Need to handle sets carefully: copy/expand, but with extrusion

35

• CAD interaction: CGM

• Mesh generation: GRUMMP, NWGrid

• Mesh databases: FMDB, MOAB

• Mesh improvement: Mesquite, swapping tools

• Parallel Adaptive loops: FMDB, NWGrid, MeshAdapt

• Front tracking: Frontier

• Partitioning: Zoltan

The ITAPS team has developed tools
to address these needs

36

Opportunities for Collaboration

• ANL/ITAPS received SAP funding for a post-doc starting in November,
should have it filled by end of January

• Near-term opportunities
– Incorporation of CAD into production shape optimization, curved boundary

correction tools

– Parallel meshing

– Fast ray-tracing, EB meshing on complex CAD

• Longer-term opportunities
– Common set of CAD-based cavity models

– Direct comparison of results from different codes on common mesh-based
representation

– Data analysis & viz through common mesh interface

– ?

